20-year Puzzle in Quantum Magnetism Solved! M.J. Lewis¹, B.D. Gaulin^{1,2}, L. Filion¹, C. Kallin^{1,2}, A.J. Berlinsky^{1,2}, H.A. Dabkowska¹, Y. Qiu³ and J.R.D. Copley³ ¹McMaster University, ²Canadian Inst. For Adv. Res., ³NIST/CHRNS - DMR-0086210 Failed attempts over 20 years to detect ordering of the magnetic Ni3+ ions in LiNiO2 led to speculation about an exotic quantum ground state in this potential battery material. Recent measurements using the CHRNS Disk Chopper Spectrometer (DCS) on isostructural NaNiO2 revealed a simple antiferromagnetic structure and conventional spin waves. In $LiNiO_2$, 1 % to 3 % of Li^+ ions are found on Ni3+ sites, due to their similar size, in even the best prepared sample. This does not occur for the larger Nat ions in $NaNiO_2$. The presence of "impurity" Ni ions on the Li sublattice within LiNiO₂ apparently frustrates antiferromagnetic order; a novel, if less exotic, example of frustrated magnetism. Wave vector (Q) and energy dependence of the neutron scattering from NaNiO₂ at 3 temperatures below $T_N \approx 22 \text{ K}$. M.J. Lewis, *et al.* "Ordering and spin waves in NaNiO₂: A stacked quantum ferromagnet" Phys. Rev. Lett., submitted.